эпюра распределения - Übersetzung nach französisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

эпюра распределения - Übersetzung nach französisch

Гиббса распределения; Каноническое распределение; Распределения Гиббса

эпюра распределения      
épure de répartition
эпюра распределения земляных масс      
épure du mouvement des terres
эпюра         
( графическое изображение закона изменения функции в зависимости от изменения аргумента )
diagramme; épure

Definition

Функция распределения

основное понятие статистической физики (См. Статистическая физика); характеризует плотность вероятности распределения частиц статистической системы по фазовому пространству (См. Фазовое пространство) (т. е. по координатам (qi и импульсам pi) в классической статистической физике или вероятность распределения по квантовомеханическим состояниям в квантовой статистике.

В классической статистической физике Ф. р. f (p, q, t) определяет вероятность dω = f (p, q, t) dp dq обнаружить систему из N частиц в момент времени t в элементе фазового объёма dpdq = dp1dq1... dpN ×dqN вблизи точки p1, q1,..., pN, qn. Учитывая, что перестановка тождественных (одинаковых) частиц не меняет состояния, следует уменьшить фазовый объём в N! раз; кроме того, удобно перейти к безразмерному элементу (Базового объёма, заменив dpdq на dpdq/N! h3N, где Планка постоянная h определяет минимальный размер ячейки в фазовом пространстве. См. также Гиббса распределение.

Wikipedia

Распределение Гиббса

Распределение (каноническое) Гиббса — распределение состояний макроскопической термодинамической системы частиц, находящейся в тепловом равновесии с термостатом (окружающей средой). В классическом случае плотность распределения равна

w ( X , a ) = 1 Z e β H ( X , a ) , {\displaystyle w(X,a)={\frac {1}{Z}}e^{-\beta H(X,a)},}

где X {\displaystyle X}  — совокупность 6 N {\displaystyle 6N} канонических переменных N {\displaystyle N} частиц ( 3 N {\displaystyle 3N} координат и 3 N {\displaystyle 3N} импульсов), a {\displaystyle a}  — совокупность внешних параметров, H ( X , a ) {\displaystyle H(X,a)}  — гамильтониан системы, β {\displaystyle \beta }  — параметр распределения. Величину Θ = 1 β {\displaystyle \Theta ={\frac {1}{\beta }}} называют модулем распределения. Можно показать, что модуль распределения Θ = k T {\displaystyle \Theta =kT} , где T {\displaystyle T}  — абсолютная температура, k {\displaystyle k}  — постоянная Больцмана. Z {\displaystyle Z}  — параметр, определяемый исходя из условия нормировки ( X ) w ( X , a ) d X = 1 {\displaystyle \int _{(X)}w(X,a)dX=1} , откуда следует, что

Z = ( X ) e β H ( X , a ) d X . {\displaystyle Z=\int _{(X)}e^{-\beta H(X,a)}dX.}

Z {\displaystyle Z} называют интегралом состояний.

Часто используют следующую параметризацию распределения Гиббса:

w ( X , a ) = e Ψ ( Θ , a ) H ( X , a ) Θ , {\displaystyle w(X,a)=e^{\frac {\Psi (\Theta ,a)-H(X,a)}{\Theta }},}

где Ψ ( Θ , a ) = Θ ln Z ( Θ , a ) {\displaystyle \Psi (\Theta ,a)=-\Theta \ln Z(\Theta ,a)}  — так называемая свободная энергия системы.

В квантовом случае предполагается счётное множество энергетических уровней, и вместо плотности распределения рассматривается вероятность нахождения системы в том или ином состоянии:

W i = e Ψ E i Θ . {\displaystyle W_{i}=e^{\frac {\Psi -E_{i}}{\Theta }}.}

Условие нормировки имеет вид i = 0 W i = 1 {\displaystyle \sum _{i=0}^{\infty }W_{i}=1} , следовательно

Z = i = 0 e E i Θ , {\displaystyle Z=\sum _{i=0}^{\infty }e^{-{\frac {E_{i}}{\Theta }}},}

что является аналогом интеграла состояний и называется суммой состояний или статистической суммой.

Распределение Гиббса представляет наиболее общую и удобную основу для построения равновесной статистической механики. Знание распределения частиц системы позволяет найти средние значения различных характеристик термодинамической системы по формуле математического ожидания. С учётом большого количества частиц в макроскопических системах, эти математические ожидания в силу закона больших чисел совпадают с реально наблюдаемыми значениями термодинамических параметров.